Reference
Contents
Index
HFDisorderHubbard.CubicLattice
HFDisorderHubbard.HubbardPara
HFDisorderHubbard.checkConverge
HFDisorderHubbard.getNMean
HFDisorderHubbard.getSupMean
HFDisorderHubbard.init
HFDisorderHubbard.step!
HFDisorderHubbard.CubicLattice
— TypeCubicLattice(L::Int)
CubicLattice with PBC boundary
HFDisorderHubbard.HubbardPara
— Type3D Anderson-Hubbard Model. Hamiltonian see index part.
HubbardPara
t
: hopping amplitudeU
: Hubbard interactionW
: disorder strength, onsite disorder energies are drawn from a Gaussian distribution in the interval[-W/2, W/2]
n_up
:⟨n_{i↑}⟩ = ∑_{α} |⟨i↑|α⟩|^2
n_down
:⟨n_{i↓}⟩ = ∑_{α} |⟨i↓|α ⟩|^2
[1]S_up
:⟨S_{i}^+⟩ = ∑_{α} |⟨0|c_{i↓}^† c_{i↑}⟩|α⟩|^2
S_down
: conjugation ofS_up
[1] F.Fazileh et al. 2006 Physical Review Letters
HFDisorderHubbard.checkConverge
— FunctioncheckConverge(data::SCFdata, n_up::Vector{Float64}, n_down::Vector{Float64}, S_up::Vector{Complex{Float64}})
check if SCF converges. Ref: Inui and Littlewood (1991)
HFDisorderHubbard.getNMean
— MethodgetNMean(U::AbstractMatrix)
calculate ⟨n_{i}⟩ = ∑_{α} |⟨i|α ⟩|^2
where i ∈ 1:2L, α ∈ 1:N. 1:L labels spin-up operators, L+1:2L labels spin-down operators.
return: nup, ndown
HFDisorderHubbard.getSupMean
— MethodgetSupMean(U::AbstractMatrix)
return: S_up
HFDisorderHubbard.init
— Methodinit(rng::AbstractRNG, lat::CubicLattice)
initialize SCF guess
HFDisorderHubbard.step!
— Methodstep!(data::SCFdata, lat::CubicLattice, para::HubbardPara)
step on SCF, if converge, returns true.